leon-dulich
Sunday, 14 October 2018
Danh sách tích phân với hàm lượng giác ngược – Wikipedia tiếng Việt
Dưới đây là
danh sách các tích phân với hàm lượng giác ngược
.
∫
arcsin
x
c
d
x
=
x
arcsin
x
c
+
c
2
−
x
2
{displaystyle int arcsin {frac {x}{c}},dx=xarcsin {frac {x}{c}}+{sqrt {c^{2}-x^{2}}}}
∫
x
arcsin
x
c
d
x
=
(
x
2
2
−
c
2
4
)
arcsin
x
c
+
x
4
c
2
−
x
2
{displaystyle int xarcsin {frac {x}{c}},dx=left({frac {x^{2}}{2}}-{frac {c^{2}}{4}}right)arcsin {frac {x}{c}}+{frac {x}{4}}{sqrt {c^{2}-x^{2}}}}
∫
x
2
arcsin
x
c
d
x
=
x
3
3
arcsin
x
c
+
x
2
+
2
c
2
9
c
2
−
x
2
{displaystyle int x^{2}arcsin {frac {x}{c}},dx={frac {x^{3}}{3}}arcsin {frac {x}{c}}+{frac {x^{2}+2c^{2}}{9}}{sqrt {c^{2}-x^{2}}}}
∫
x
n
sin
−
1
x
d
x
=
1
n
+
1
(
x
n
+
1
sin
−
1
x
{displaystyle int x^{n}sin ^{-1}x,dx={frac {1}{n+1}}left(x^{n+1}sin ^{-1}xright.}
+
x
n
1
−
x
2
−
n
x
n
−
1
sin
−
1
x
n
−
1
+
n
∫
x
n
−
2
sin
−
1
x
d
x
)
{displaystyle left.+{frac {x^{n}{sqrt {1-x^{2}}}-nx^{n-1}sin ^{-1}x}{n-1}}+nint x^{n-2}sin ^{-1}x,dxright)}
∫
arccos
x
c
d
x
=
x
arccos
x
c
−
c
2
−
x
2
{displaystyle int arccos {frac {x}{c}},dx=xarccos {frac {x}{c}}-{sqrt {c^{2}-x^{2}}}}
∫
x
arccos
x
c
d
x
=
(
x
2
2
−
c
2
4
)
arccos
x
c
−
x
4
c
2
−
x
2
{displaystyle int xarccos {frac {x}{c}},dx=left({frac {x^{2}}{2}}-{frac {c^{2}}{4}}right)arccos {frac {x}{c}}-{frac {x}{4}}{sqrt {c^{2}-x^{2}}}}
∫
x
2
arccos
x
c
d
x
=
x
3
3
arccos
x
c
−
x
2
+
2
c
2
9
c
2
−
x
2
{displaystyle int x^{2}arccos {frac {x}{c}},dx={frac {x^{3}}{3}}arccos {frac {x}{c}}-{frac {x^{2}+2c^{2}}{9}}{sqrt {c^{2}-x^{2}}}}
∫
arctan
x
c
d
x
=
x
arctan
<
mi>x
c
−
c
2
ln
(
c
2
+
x
2
)
{displaystyle int arctan {frac {x}{c}},dx=xarctan {frac {x}{c}}-{frac {c}{2}}ln(c^{2}+x^{2})}
∫
x
arctan
x
c
d
x
=
c
2
+
x
2
2
arctan
x
c
−
c
x
2
{displaystyle int xarctan {frac {x}{c}},dx={frac {c^{2}+x^{2}}{2}}arctan {frac {x}{c}}-{frac {cx}{2}}}
∫
x
2
arctan
x
c
d
x
=
x
3
3
arctan
x
c
−
c
x
2
6
+
c
3
6
ln
c
2
+
x
2
{displaystyle int x^{2}arctan {frac {x}{c}},dx={frac {x^{3}}{3}}arctan {frac {x}{c}}-{frac {cx^{2}}{6}}+{frac {c^{3}}{6}}ln {c^{2}+x^{2}}}
∫
x
n
arctan
x
c
d
x
=
x
n
+
1
n
+
1
arctan
x
c
−
c
n
+
1
∫
x
n
+
1
d
x
c
2
+
x
2
(
n
≠
1
)
{displaystyle int x^{n}arctan {frac {x}{c}},dx={frac {x^{n+1}}{n+1}}arctan {frac {x}{c}}-{frac {c}{n+1}}int {frac {x^{n+1}dx}{c^{2}+x^{2}}}qquad {mbox{(}}nneq 1{mbox{)}}}
∫
arcsec
x
c
d
x
=
x
arcsec
x
c
+
x
c
|
x
|
ln
|
i>x
±
x
2
−
1
|
{displaystyle int operatorname {arcsec} {frac {x}{c}},dx=xoperatorname {arcsec} {frac {x}{c}}+{frac {x}{c|x|}}ln {|xpm {sqrt {x^{2}-1}}|}}
∫
x
arcsec
x
d
x
=
1
2
(
x
2
arcsec
x
−
x
2
−
1
)
{displaystyle int xoperatorname {arcsec} {x},dx,=,{frac {1}{2}}left(x^{2}operatorname {arcsec} {x}-{sqrt {x^{2}-1}}right)}
∫
x
n
arcsec
x
d
x
=
1
n
+
1
(
x
n
+
1
arcsec
x
−
1
n
(
x
n
−
1
x
2
−
1
{displaystyle int x^{n}operatorname {arcsec} {x},dx,=,{frac {1}{n+1}}left(x^{n+1}operatorname {arcsec} {x}-{frac {1}{n}}left(x^{n-1}{sqrt {x^{2}-1}};right.right.}
+
(
1
−
n
)
(
x
n
−
1
arcsec
x
+
(
1
−
n
)
∫
x
n
−
2
arcsec
x
d
x
)
)
)
{displaystyle left.left.+(1-n)left(x^{n-1}operatorname {arcsec} {x}+(1-n)int x^{n-2}operatorname {arcsec} {x},dxright)right)right)}
∫
a
r
c
c
o
t
x
c
d
x
=
x
a
r
c
c
o
t
x
c
+
c
2
ln
(
c
2
+
x
2
)
{displaystyle int mathrm {arccot} ,{frac {x}{c}},dx=x,mathrm {arccot} ,{frac {x}{c}}+{frac {c}{2}}ln(c^{2}+x^{2})}
∫
x
a
r
c
c
o
t
x
c
d
x
=
c
2
+
x
2
2
a
r
c
c
o
t
x
c
+
c
x
2
{displaystyle int x,mathrm {arccot} ,{frac {x}{c}},dx={frac {c^{2}+x^{2}}{2}},mathrm {arccot} ,{frac {x}{c}}+{frac {cx}{2}}}
∫
x
2
a
r
c
c
o
t
x
c
d
x
=
x
3
3
a
r
c
c
o
t
x
c
+
c
x
2
6
−
c
3
6
ln
(
c
2
+
x
2
)
{displaystyle int x^{2},mathrm {arccot} ,{frac {x}{c}},dx={frac {x^{3}}{3}},mathrm {arccot} ,{frac {x}{c}}+{frac {cx^{2}}{6}}-{frac {c^{3}}{6}}ln(c^{2}+x^{2})}
∫
x
n
a
r
c
c
o
t
x
c
d
x
=
x
n
+
1
n
+
1
a
r
c
c
o
t
x
c
+
c
n
+
1
∫
x
n
+
1
d
x
c
2
+
x
2
(
n
≠
1
)
{displaystyle int x^{n},mathrm {arccot} ,{frac {x}{c}},dx={frac {x^{n+1}}{n+1}},mathrm {arccot} ,{frac {x}{c}}+{frac {c}{n+1}}int {frac {x^{n+1}dx}{c^{2}+x^{2}}}qquad {mbox{(}}nneq 1{mbox{)}}}
No comments:
Post a Comment
Newer Post
Older Post
Home
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment